Then why doesn’t the juxtaposition of mc precede the square?
For starters stop calling it "juxtaposition" - it's a Product/Term. Second, as I already told you, c²=cc, so I don't know why you're still going on about it. I have no idea what your point is.
In your chosen book
You know I've quoted dozens of books, right?
you can’t say shit about it
Again I have no idea what you're talking about.
expands 6(ab)3 to 6(ab)(ab)(ab)
Ah, ok, NOW I see where you're getting confused. 6ab²=6abb, but 6(ab)²=6abab. Now spot the difference between 6ab and 6(a+b). Spoiler alert - the latter is a Factorised Term, where separate Terms have been Factorised into 1 term, the former isn't. 2 different scenario's, 2 different rules relating to Brackets, the former being a special case to differentiate between 6ab² and 6a²b²=6(ab)²
P.S.
is like arguing 1+2 is different from 2+1 because 8/1+2 is different from 8/2+1
this is correct - 2+1 is different from 1+2, but (1+2) is identically equal to (2+1) (notice how Brackets affect how it's evaluated? 😂) - but I had no idea what you meant by "throwing other numbers on there", so, again, I have no idea what your point is










Terms/Products is mathematical fact, as is The Distributive Law. Maths textbooks never use the word "juxtaposition".
That's right. 1/2(8)²=1/256, 1/2x8²=32, same difference as 8/2(1+3)=1 but 8/2x(1+3)=16
Nope! It doesn't say that 1/a(b+c)=1/ax(b+c). You're making a false equivalence argument
Question about solving an equation and not about solving an expression. False equivalence again.
Nope! I have never said that, which is why you're unable to quote me saying that. I said 6(a+b)² doesn't equal 6x(a+b)², same difference as 8/2(1+3)=1 but 8/2x(1+3)=16
That's right
Got no idea what you're talking about
Yes
No, you've come up with nothing other than False Equivalence arguments. You're taking an equation with exponents and no division, and trying to say the same rules apply to an expression with division and no exponents, even though we know that exponent rule is a special case anyway, even if there was an exponent in the expression, which there isn't. 🙄
For teenagers, who are taught The Distributive Law in Year 7